

 Swinburne Research Bank
 http://researchbank.swinburne.edu.au

Hassan, A. H., Fluke, C. J., & Barnes, D. G. (2011). Interactive visualization of the largest

radioastronomy cubes.

Originally published in New Astronomy, 16(2), 100–109.
Available from: http://dx.doi.org/10.1016/j.newast.2010.07.009

Copyright © 2010 Elsevier Ltd. All rights reserved.

This is the author’s version of the work. It is posted here with the permission of the publisher for
your personal use. No further distribution is permitted. If your library has a subscription to this

journal, you may also be able to access the published version via the library catalogue.

Accessed from Swinburne Research Bank: http://hdl.handle.net/1959.3/93377

Interactive Visualization of the Largest Radioastronomy Cubes

A.H. Hassan, C.J. Fluke, D.G. Barnes

Centre for Astrophysics & Supercomputing, Swinburne University of Technology, Hawthorn, Victoria, Australia

Abstract

3D visualization is an important data analysis and knowledge discovery tool, however, interactive visualization of large 3D
astronomical datasets poses a challenge for many existing data visualization packages. We present a solution to interactively
visualize larger-than-memory 3D astronomical data cubes by utilizing a heterogeneous cluster of CPUs and GPUs. The system
partitions the data volume into smaller sub-volumes that are distributed over the rendering workstations. A GPU-based ray casting
volume rendering is performed to generate images for each sub-volume, which are composited to generate the whole volume output,
and returned to the user. Datasets including the HI Parkes All Sky Survey (HIPASS - 12 GB) southern sky and the Galactic All Sky
Survey (GASS - 26 GB) data cubes were used to demonstrate our framework’s performance. The framework can render the GASS
data cube with a maximum render time < 0.3 second with 1024× 1024 pixels output resolution using 3 rendering workstations and
8 GPUs. Our framework will scale to visualize larger datasets, even of Terabyte order, if proper hardware infrastructure is available.

Keywords: methods: data analysis, techniques: miscellaneous

1. Introduction

Visualization is the process of generating images of data in
order to aid knowledge discovery. Visualization is an integral
part of astronomy, playing a role in all stages of research (plan-
ning, data monitoring, quality control, analysis, and interpreta-
tion) and disemmination (publication, presentation, and public
outreach).

Three-dimensional (3D) visualization has proven to be of
great value for studying and interpreting spectral data cubes
from radiotelescopes (Norris, 1994), and more recently from
optical telescopes fitted with integral field units. A spectral data
cube is a regular, scalar 3D data lattice. Two axes define (angu-
lar) sky coordinates, and the third axis defines a (usually linear)
spectral abcissa. While sky coordinates can ordinarily be trans-
formed non-degenerately to a physical (spatial) representation,
the same can only be done for the spectral abcissa under special
circumstances. Nevertheless, it is standard practice to treat all
three axes equally and display both axially-aligned 2D slices,
and arbitrary 3D projections of the cube.

3D visualization of spectral data cubes can:

• give improved 3D perception of the data and enhanced
comprehension of global properties (e.g. Figure 1 of this
paper);

• be employed as a quality control tool to detect and inves-
tigate instrumental and data processing errors, (Oosterloo,
1996; Beeson et al., 2004);

Email addresses: ahassan@swin.edu.au (A.H. Hassan),
cfluke@swin.edu.au (C.J. Fluke), dbarnes@swin.edu.au (D.G. Barnes)

• enable innovative quantitative data analysis through the
selection and characterization of 3D regions and compar-
isons with simulations [e.g. Fluke et al. (2010)]; and

• support the discovery of strange phenomena, unexpected
relations, or previously unidentified patterns that cannot be
accomplished with automated techniques (Beeson et al.,
2004).

1.1. Volume rendering
One particularly useful technique for studying 3D data vol-

umes is volume rendering. Here, a color-coded 2D projection of
the 3D data is generated by emulating an optical model that de-
scribes the interaction of light emitted, absorbed, or reflected by
elements that make up that volume [e.g. Drebin et al. (1988);
Lacroute and Levoy (1994); Levoy (1990); Schwarz (2007)].
Volume rendering gives the viewer a global picture of a 3D
dataset by displaying large and small-scale features, as well
as internal and external structures. While rendering of isosur-
faces or manually-segmented surfaces can be used to visualize
spectral cubes, these techniques frequently fail for two reasons:
most astronomical sources do not have well-defined surfaces,
especially in the (typically) low signal-to-noise regime of spec-
tral line astronomy; and spectral cubes are not directly repre-
sentative of (or transformable to) a 3D spatial physical repre-
sentation, and so interpretation of the surface is difficult. In
contrast to surface rendering, volume rendering remains useful
where clear feature segmentation cannot be done (Beeson et al.,
2003; Gooch, 1995; Oosterloo, 1995).

One of the earliest volume rendering applications in astron-
omy was in 1992 by Domik and colleagues at the Univer-
sity of Colorado (Domik and Mickus-Miceli, 1992; Brugel,
1993). They introduced a preliminary implementation, which

Preprint submitted to New Astronomy August 3, 2010

ar
X

iv
:1

00
8.

01
35

v1
 [

as
tr

o-
ph

.I
M

]
 1

 A
ug

 2
01

0

they called “translucent representation”. Despite the limited
graphics and processing capabilities available at the time, they
favored volume rendering over the other techniques provided
in their software suite (such as isosurfaces and data slicing).
Contemporary astronomy volume rendering implementations
include those that provide domain-specific transfer functions
[e.g. the hot gas shader (Oosterloo, 1996)], those that offer
effective handling of adaptive grids and different data resolu-
tions (Kaehler et al., 2006; Nadeau et al., 2001; Magnor et al.,
2005), and one that addresses the larger-than-memory data size
problem (Beeson et al., 2003).

1.2. The larger-than-memory problem
The largest spectral line cubes from surveys carried out with

contemporary radiotelescopes are typically several gigabytes
(GB) in size. For example, the image cube of the entire south-
ern sky generated from HIPASS data (forthwith, the “HIPASS
cube”, Barnes et al., 2001) measures 1721 × 1721 × 1024 vox-
els,1 and expressed as four-byte floats occupies ∼ 12 GB in
memory or on disk. The image cube of the entire sky gen-
erated from GASS data (McClure-Griffiths et al., 2009) mea-
sures 2502 × 2501 × 1093 voxels, and occupies ∼ 25 GB.
The next generation of radiotelescopes [e.g. Australian Square
Kilometer Array Pathfinder (ASKAP)2, LOw Frequency AR-
ray (LOFAR)3, Murchison Widefield Array (MWA)4 , and
Karoo Array Telescope (Meerkat)5] will produce even larger
cubes. The standard, single-pointing spectral line cube from
ASKAP for example is expected to have dimensions of order
6144 × 6144 × 16384, occupying ∼ 2.5 terabytes (TB).

Volume rendering of these large cubes—from existing and
planned radiotelescopes—at interactive frame rates [i.e. better
than ∼ 5 frames per second (fps)], is well beyond the capa-
bility of a single, standalone workstation. The principal limit-
ing factor is memory capacity, and so we refer to this problem
as the larger-than-memory data size problem. One “solution”
to the larger-than-memory problem is to simply extract a sub-
cube whose data can fit in memory and accept that visualising
the original spectral cube in its entirety is not possible. While
there are circumstances where this is an acceptable solution, it
is sometimes impractical (a cube may need to be visualized in
10 or more “pieces”), and there can be significant value in vi-
sualising a large data set in its entirety.

Consider for example the depiction of the HIPASS cube in
Figure 1. This volume rendering, accomplished with the tech-
nique we present in this paper, provides a striking global sum-
mary of not just the scientific content of the data—the Magel-
lanic Clouds and Stream (red feature near the centre of the left-
facing facet of the cube); the residual continuum emission, after
bandpass calibration, in the plane of the Milky Way Galaxy (the
green arc-like feature on the left-facing facet); and hundreds of
galaxies detected in the 21 cm neutral Hydrogen emission line

1A voxel is a volume element as a pixel is a picture element.
2http://www.atnf.csiro.au/SKA/
3http://www.lofar.org/
4http://www.mwatelescope.org/
5http://www.ska.ac.za/meerkat/

(short bars running along the spectral axis), which are weakly
clustered and more numerous nearby (towards the left)—but
also the numerous artefacts present in the processed data. For
example, residual continuum emission from the Galaxy extends
through the entire spectral space (the ramp associated with the
green arc-like feature), with an intensity variation (“ripple”)
along the spectral axis correlated on the sky (e.g. the increased
intensity on the upper part of the ramp at the centre of the im-
age).

The larger-than-memory problem has been previously exam-
ined in astronomy by Beeson et al. (2003) who implemented the
distributed shear-warp algorithm (Lacroute and Levoy, 1994)
over a Beowulf-style cluster. In their solution (dvr—distributed
volume renderer), the volume data was segmented and dis-
tributed to cluster nodes, rendered locally, and the (sub-)images
were combined by a controlling node using an associative com-
positing operator. Dvr demonstrated good rendering speeds
compared to other solutions at the time, but does not scale
well to today’s largest radioastronomy cubes (see their Fig-
ure 9). Even if dvr scaled perfectly with no parallelization
costs, ∼ 120 6-core Westmere processors6, with each core han-
dling 20 Mvox sec−1, would be needed to render the HIPASS
cube at 5 fps.7

1.3. This work
In this paper, we present a new solution to the larger-than-

memory problem, using a significantly smaller computer sys-
tem than dvr requires for the same input image cube size. Our
objective is to provide astronomers with a practical tool to inter-
actively explore and visualize the largest radioastronomy spec-
tral data cubes in real time. Our initial focus is visualizing data
from ASKAP, however, it is also applicable to facilities such
as LOFAR, ALMA8, MWA, and existing large datasets such as
the HIPASS cube. We begin with the HIPASS and GASS data
cubes as benchmarks to test our solution performance and scal-
ability. Both of these datasets are sufficiently large to provide a
valid test of our volume rendering framework (see results sec-
tion for more details).

This work is about removing a potential technological barrier
and enabling astronomers to have a qualitative look at their data
as a first step to understanding the complex elements that will
occur in the largest radioastronomy datacubes. In particular, we
assert that global views can play a vital role as a quality con-
trol tool, especially since some of the upcoming facilities (e.g.
ASKAP) will not be able to keep all the raw observational data
after the initial processing phase. Being able to see the data
products from such facilities in a real-time and interactive way
may save a lot of precious time and data, and provide oppor-
tunities for reprocessing while the raw data products still exist.
Furthermore, we anticipate that global views may aid in dis-
covering systematic and non-systematic noise effects, such as
signals that vary across the sky due to calibration issues, which

6http://ark.intel.com/Product.aspx?id=47920&processor=X5670&spec-
codes=SLBV7

7see Beeson et al. (2003) Equation 7.
8http://www.alma.nrao.edu/

2

Figure 1: Volume rendering of the HIPASS cube, accomplished with the approach described in this paper. The southern sky cube was generated by Russell Jurek
(ATNF) from 387 individual cubes. See Section 1.2 for a description of the features in this cube.

3

may otherwise take huge processing or data reduction effort to
determine and extract (e.g. HIPASS data cube in figure 1).

2. Ray casting

A volume rendering is generated by a process called ray
casting, which computes the projection of a coloured, semi-
transparent volume onto a (finite) 2D viewing plane. The colour
and the opacity of each voxel are derived from its data value us-
ing a predefined mapping operator called a “transfer function”.
For each pixel on the viewing plane, the ray casting process
computes a ray originating at this pixel and projects it into the
data volume. The ray is traced through the volume, accumu-
lating an aggregate colour and opacity which is assigned to the
pixel. The process of compositing any two voxel colours is
also defined by the selected transfer function; see Levoy (1990)
for a detailed description of the original ray casting algorithm.
Although it is a computationally intensive task, ray casting is
trivially parallel. This parallel nature has motivated the de-
velopment of number of parallel ray casting algorithms [e.g.
Goel and Mukherjee (1996); Maximo et al. (2008); Scharsach
(2005); Jin et al. (2010)].

Graphics Processing Units (GPUs) are the silicon proces-
sors used to deliver the computations required for 3D computer
graphics. They represent a cheap, commodity hardware (on
graphics cards and non-graphics co-processor cards) that can
now be utilized as massively-parallel, general purpose compu-
tational co-processors, by using software development kits such
as CUDA9 and OpenCL10. GPUs have been taken up rapidly
by the astronomy computing community [e.g. Hamada et al.
(2009); Wayth et al. (2009); Schive et al. (2010)] and in the field
of astrophysical visualization, GPUs have been well-utilized
for N-body particle data (Kaehler et al., 2006; Li et al., 2008;
Szalay et al., 2008; Jin et al., 2010; Becciani et al., 2010). In
these examples, GPUs have been used to enhance the rendering
speed of the graphics primitives by e.g. ∼ 23% for the Splotch
code (Jin et al., 2010), but these approaches are still limited to
datasets that fit within a single machine memory.

Motivated by the appearance of GPUs with large local mem-
ory (e.g. 1.7 GB in the AMD ATI Radeon 5970; 1.5 GB in the
NVIDIA GX285; up to 4 GB in the NVIDIA Tesla products),
and the suitability of the massively-parallel GPU architecture
to the ray casting algorithm, we developed a framework which
utilizes a heterogeneous CPU and GPU hardware infrastruc-
ture, combining shared- and distributed-memory architectures,
to yield a scalable volume rendering solution, capable of vol-
ume rendering image cubes larger than a single machine mem-
ory limit, in real-time and at interactive frame rates. We utilize
GPUs as massively-parallel floating point co-processors and
consequently, our framework may be suitable for other parallel
scientific computing applications, especially those processing
or analysing larger-than-memory images.

9 http://www.nvidia.com/object/ cuda what is.html
10http://www.khronos.org/opencl/

2.1. Hardware and software architecture
To address the distributed volume rendering framework, we

describe both the hardware and software architecture. Figure 2
shows a conceptual diagram for our hardware architecture. This
architecture consists of the following main components:

1. A Cluster of interconnected nodes, each featuring one or
more GPU cards and one or more CPU cores;

2. A Server machine, which will schedule tasks, exchange
messages between the cluster and the viewer application,
for final result composition;

3. Viewer machine(s), which are a regular workstations as-
sociated with a display device and I/O mechanism with a
connection to the server node; and

4. A File Server, which is a storage node (can be physically
any of the processing clients or the server machine) acces-
sible by all the rendering nodes, the server, and the viewer
machine.

Based on this architecture configuration, we made the following
design assumptions:

• The viewer machine will have only a thin-client applica-
tion with a small memory and processing requirements.
Only a small percentage of the processing will be done
on the viewer machine to facilitate the user interactivity,
the I/O operations, and the result display. This will make
the rendering cluster accessible over geographically dis-
tributed locations;

• The final output at arbitrary resolution, can be directed to
a single display or a tiled-display system. Although this
may decrease the final frame rate, the capability to view
a dataset at its full resolution, or even with larger resolu-
tion, is very important. For example, some of the small
features or details may be hidden if we view ASKAP-size
data cubes (6144×6144 spatial pixels are anticipated) with
regular screen resolutions(e.g 1920×1200 for WUXGA is
typical); and

• All the rendering nodes and the server can communicate
using message passing interface (MPI) 11. This can be
achieved for either a static (the number of cluster nodes is
constant) or dynamic cluster (the number of cluster nodes
changes with the problem size).

The supporting software architecture utilizes the following
software components:

• MPI: for the communication between different rendering
nodes and the rendering server;

• NVIDIA Compute Unified Device Architecture (CUDA):
for the ray-casting implementation on the GPU;

• Multithreading and message queue: for the communica-
tion and management of different GPUs on the same ren-
dering node; and

11 http://www.mcs.anl.gov/research/ projects/mpi/

4

http://www.nvidia.com/object/
http://www.mcs.anl.gov/research/

Figure 2: Conceptual diagram for the system hardware architecture. The main system layers are the viewer application, the rendering server, the data/file server,
and the rendering client(s). The viewer application may work over different possible remote client’s configuration including Web/Thin client, Desktop machine, or
tiled display system.

• TCP direct socket communication: to communicate be-
tween the viewer application and the server.

The components described above were integrated in a C++

framework to create a distributed GPU-based rendering farm.
This C++ framework orchestrates the process of task distribu-
tion, data mapping, compositing, and communication between
different GPU kernels, where the actual computation is done.
This system assumes that the underlying hardware architec-
ture is heterogeneous, which means that the number of GPUs
in each rendering node, the amount of available memory, and
possibly even processing power, is different from one node to
the next. MPI is used for communication between the dif-
ferent rendering nodes and the rendering server. It has been
used because it is the de-facto standard for distributed systems.
Only the master thread (i.e. the thread responsible for the lo-
cal scheduling and communication on each rendering node) on
each processing node can communicate directly with the ren-
dering server. Also, the server has no direct control over the
processing threads (the threads associate to the GPU units on
each node which handle the CUDA kernel invocation and result
transfer between GPU memory and the node’s system mem-
ory).

The communication between the master thread and the pro-
cessing threads on each of the rendering nodes is done using a
shared Priority Message Queue in a completely asynchronous
manner. This method speeds up the communication and min-
imizes the data sharing between the different threads. Also,

it keeps the CUDA function calls within the same thread 12.
When required, any Master thread and the server can commu-
nicate together in a synchronous manner. The communication
between the server and the viewer application is done through
a direct TCP socket. This communication channel is opened
and closed via the client and used to transfer control oriented
messages and results. The current client implementation uses a
QT13-based user interface and OpenGL14 for graphical display
and user interaction.

2.2. Rendering overview
The rendering process starts when the user selects a file to

render (a menu item on the user interface). The client opens the
requested file and loads the associated metadata. The file di-
mensions, and the recorded minimum and maximum data val-
ues are displayed to the user. The user may load the entire cube
or a manually specified sub-cube. The user also has the con-
trol to use the minimum and the maximum value recorded in
the file’s metadata or to ask the server to recalculate the cube
minimum and maximum. Next, the file path and the selected
cube dimensions are sent to the server to start the data loading
process. The server performs a global scheduling task that par-
titions the cube according to the current rendering nodes. The
server then sends a separate file-loading request to each of the

12sharing CUDA context between different thread is not supported as of ver-
sion 2.3

13 http://qt.nokia.com/
14 http://www.opengl.org/

5

http://qt.nokia.com/

processing clients. Each loading request contains the file path
and the client’s associated cube portion. In an asynchronous
manner, the clients perform a local scheduling task that par-
titions its associated cube portion, depending on the available
GPUs in each client, and start loading data. Once the data is
loaded, the data is transferred from the system memory to the
GPU memory.

If requested by the user, each GPU calculates the minimum
and the maximum of its cube portion, which are then sent back
to the server where the global minimum and maximum is cal-
culated. The global minimum and maximum are returned to the
client with a data loading confirmation message. The viewer
application then generates the color map, which will be used
in the rendering, and sends it back to the server as well. After
these initialization steps are complete, the server will stay pend-
ing for render requests from the viewer application. Whenever
the user interacts with the displayed output on the viewer appli-
cation, the rendering parameters (the transformation and pro-
jection matrices) are sent to the server associated with a render
request. This render request is distributed over the rendering
nodes, which use the GPUs to generate the frame portions and
combine (i.e. composite) them. The server performs the fi-
nal frame composition and sends the result back to the client.
The user is also able to perform some other interactions, such
as changing the color map, enabling/ disabling spectral chan-
nel(s), which are handled in the same manner.

2.3. Data Partitioning

The dataset is partitioned in an object-based manner, which
means that each GPU gets only a portion of the data. At the
same time each GPU is responsible for generating a portion of
the final frame, corresponding to the projection of its assigned
data on the current viewing plane using the ray-casting algo-
rithm (Sabella, 1988). The final resultant frame images from
each GPU are composited together to produce the final output
frame. Figure 3 shows an example data partitioning mecha-
nism. Alternative data partitioning mechanisms could be ap-
plied, including more sophisticated techniques like binary space
partitioning (Thibault and Naylor, 1987) or an Octree (Samet,
1995).

The data partitioning mechanism affects the final rendering
time and the overall performance as we show in Section 3.
Based on the data partitioning schema and the viewing angle,
the size of the rendering task differs from one GPU to another.
Keeping the size of these tasks balanced is an important fac-
tor to achieve the highest possible frame rate and interactivity
level. We intend to leave further investigation and enhancement
to the scheduler as future work. In the current implementation,
each scheduling module performs a separate data partitioning
decision based on the current longest axis, as shown in Figure
3, so as to achieve a “fair” distribution.

2.4. Ray-Casting Process

The processing threads are responsible for loading the data
portion associated to its assigned GPU and transferring it to
the GPU local memory. The GPU memory in our case is the

most precious resource, because of the high time cost of data
transfer between the GPU memory and the CPU memory, and
the limitation of the GPU memory size (will reach 6 GB in the
next Fermi GPU15 , but is limited to 4 GB with the current Tesla
cards).

Each processing thread computes a “rendering rectangle”.
This rendering rectangle represents the region that the associ-
ated GPU is responsible to fill with suitable colors in the final
frame. This process is performed using the convex hull algo-
rithm (Graham, 1972); the projection and transformation matri-
ces; and previous knowledge about the extent of the data cube
stored in the GPU’s memory. Each ray within the rendering
rectangle is tested against the bounding cube for the assigned
data portion. In the case where the ray does not intersect with
the cube, the current ray sampling process will exit. If the ray
intersects with the cube, the entry and exit points are calculated
and the sampling distance is determined based on the length of
the ray segment, which will be inside the bounding cube. The
ray casting kernel employs an early ray-termination mechanism
(Levoy, 1990) to speed up the overall rendering process. This
mechamism terminates the ray casting process when the accu-
mulated pixel value reach its maximum value. The final output
of the ray-casting process is a 2D floating point array of max-
imum recorded scalar value (in the case of maximum intensity
projection16) for each pixel.

The usage of these optimization steps minimizes the num-
ber of threads needed and the amount of output buffer mem-
ory accessed by each GPU, thus speeding up the execution and
memory transfer time. We note that these optimization steps do
not affect the final output resolution or image quality. Some of
these steps are also used to optimize the final frame composi-
tion steps, which we now describe.

2.5. Image Composition
The image composition is performed in two main stages (see

Figure 4):

1. Local stage at every rendering node. In this stage, each
node is compositing the results generated by its GPUs to
generate a single buffer. This composition is done with the
guidance of the rendering rectangle for each GPU. Each
GPU is executing a composition process only within its
rendering rectangle on the final local frame buffer in a se-
quential manner; and

2. Global stage at the server node. In this stage the server
node is compositing the results of all the rendering nodes
to generate the final rendering buffer.

The use of this two stage process speeds-up the composi-
tion process and minimizes the processing effort required by
the server and hence the final rendering time. The final compo-
sition complexity and validity depends on the selected transfer
function. Lombeyda et al. (2001) provide a mathematical proof
that the general alpha-blending volume rendering operator is
associative, and can be applied in any blending order.

15 http://www.nvidia.com/object/ fermi architecture.html
16http://support.svi.nl/ wiki/MaximumIntensityProjection

6

http://www.nvidia.com/object/

Figure 3: Illustration of the data partitioning process over a cluster configuration of three processing clients. The first and the second processing client have two
GPUs, while the third one contains one GPU. The cube partitioning is done based on the longest axis, so in this example the input data cube is partitioned into 3
parts over the X axis. For node 2 and node 3, the longest axis for their assigned cube is the Y axis. Node 1 has only one GPU so no further partition is required.

Figure 4: Illustration of the image composition process over a cluster configuration of two processing clients each with two GPUs. A first compositing step occurs
on each node, and the final image is combined on the server.

7

Figure 5: Volume rendering of the GASS cube, accomplished with the approach described in this paper.

Figure 6: Volume rendering of the Nbody cube, accomplished with the approach described in this paper.

8

3. Results

A cluster of four interconnected workstations (the fourth al-
ways acting as a server) and nine GPUs (one associated with the
server) was used to conduct framework timing tests. The hard-
ware specifications of these workstations are shown in Table 1.
Details of the six individual hardware configurations used are
shown in Table 2. Tests were performed using a 1024 × 1024
pixel viewport and a pre-computed sampling distance assuring
that each voxel value (intersected by at least one ray) is sampled
at least once. The communication is performed over a giga-
bit Ethernet network. Table 3 shows the details of the datasets
used for timing tests. Sample volume rendering are shown for
HIPASS cube (Figure 1), GASS cube (Figure 5), and a cube
generated from a cosmological N-body simulation (Figure 6,
refer Table 3). Although the latter dataset is not from radio as-
tronomy, it demonstrates the applicability of our framework to
other 3D data volumes.

We measure the total frame rendering time, TR, which is the
elapsed time between issuing a rendering request and receiving
the rendered frame back. TR is an indication of the number of
frames per second that the framework can render, and is a sum-
mation of the time spent on different framework sub-processes.

TR = Max(Tray(i)) + Max(Tmerge(j)) +

+ Max(Tcomm(j)) + Tserver ± ε (1)

Where 1 ≤ i ≤ Number of GPUs, 1 ≤ j ≤

Number of Workstations, Tray indicates the time spent on the
GPU doing ray tracing, Tmerge is the time spent on each client
for local merging, Tcomm is the communication time between
each workstation and the server, and Tserver is the time spent by
the server doing the global merging. The last component, ε, in-
dicates that variation happens due to the overlapping effect and
any unexpected delays (see below).

Due to the framework’s distributed behaviour and the het-
erogeneous hardware, the maximum time spent in each sub-
process is dominated by the time spent by the slowest process-
ing element. For example, the ray casting process times vary
between different GPUs based on the cube’s orientation, which
effects the size of the rendering rectangle of the dataset por-
tion. This affects the number of rays that need to be traced and
the path-length of the rays through the volume, which in turn
affects the number of sampling operations required for each
ray. Overlaps between communication and computation usu-
ally eliminate the differences between processing elements, but
due to the randomness of this overlapping order, its effect is not
constant.

Figure 7 shows a sample timing diagram for the HIPASS
cube as a function of cube orientation, using the 2P4G config-
uration (see Table 2). The rendering time depends on the cube
orientation, which is represented by the rotation angle, θ, about
the y-axis in degrees. Tray is the dominating factor for the vari-
ation in the rendering time with an average near 50%. Also, a
small variation between the frame rendering times for opposite
angles, (θ and 180◦ + θ), is caused by the early ray termination

optimization step in the ray tracing implementation. The value
of Max(Tmerge) , Max(Tcomm), and Max(Tserver) are almost con-
stant, because they are directly proportional to the final frame
output size, which is not affected by the cube orientation.

Figure 8 shows the average, minimum, and maximum frame
rendering time for the HIPASS cube for different cluster config-
urations. Figure 9 shows the average, minimum, and maximum
frame rendering time for the three datasets using the 3P8G con-
figuration. Based on these timing tests, we can conclude that:

1. Increasing the number of GPUs does not necessarily re-
duce the final rendering time. Due to the communication
and compositing overheads, for a fixed number of GPUs,
the lower the number of workstations, the lower the frame
rendering time.

2. The unbalanced distribution of rendering tasks over the
GPUs limits the framework speedup. Although different
rendering tasks are being performed in parallel, the total
frame rendering time is dominated by the maximum GPU
rendering time as shown in equation 1. The current sched-
uler implementation uses the dataset dimensions and the
GPU computational power (number of cores and memory
size) to fairly partition the dataset over the rendering nodes
and GPUs. But the problem size each GPU tries to solve
varies based on the dataset characteristics (affects early ray
termination), and the traced rays’ length (because of per-
spective projection). Figures 10 and 11 demonstrate this
by showing the different sub-frame rendering time for each
GPU for the HIPASS cube using the 2P4G configuration.
Based on the variation in the difference between the max-
imum, the average, and the minimum rendering time, we
expect this “unbalanced distribution” influence to disap-
pear with a large increase in the number of GPUs. On the
other hand, the average total frame rendering time with-
out early ray termination and with orthographic projection
is higher by 12 % from the average total frame rendering
time with the early ray termination and perspective projec-
tion. The usage of a better data partitioning and scheduling
which depends on the dataset characteristics and dimen-
sions may also improve this behaviour.

Figure 12 shows timing for the HIPASS data cube with two
different output sizes 1024 × 1024 and 512 × 512 pixels. The
timing follows the same pattern for both output sizes but with an
average time reduction of 69%. This reduction in the frame ren-
dering time is due to the reduction in Tray, the reduction in the
size of merging operations, and the size of the data exchanged
between the rendering workstations and the server.

4. Discussion

4.1. Framework performance and scalability

In order to evaluate the performance gain from adopting
GPUs as the main processing elements, we compared our per-
formance timing with the distributed volume rendering imple-
mentation (dvr) introduced by Beeson et al. (2003). The main
performance evaluation done for dvr used 2 GHz Pentium 4

9

Table 1: Hardware specification for the cluster used to evaluate the performance of our framework.
Index GPU Model GPU memory Processor Model System memory

1 4x NVIDIA Tesla C1060 4 Gigabyte/GPU 16x Intel Xeon X5550 18 Gigabyte
2 2x NVIDIA Tesla C106017 4 Gigabyte/GPU 2x Nehalem i7 24 Gigabyte
3 4x NVIDIA Tesla C1060 4 Gigabyte/GPU 2x Nehalem i7 24 Gigabyte
4 1x GeForce GTX 285 1 Gigabyte 1x Intel i7 930 12 Gigabyte

Table 3: Sample datasets used to evalute the performance of our framework.
Dataset Name Dimensions (Data Points) Source / Credits File Size
Nbody cube 1024 x 1024 x 1024 High resolution 10803 dark matter simulation of

a 125 Mpc/h box by Swinburne Computations for
WiggleZ (SCWiggleZ) project (Poole et al 2010,
in prep)

4 Gigabyte

HIPASS Cube 1721 x 1721 x 1025 HIPASS Southern Sky, data courtesy Russell Ju-
rek/HIPASS team

12 Gigabyte

GASS Cube 2502 x 2501 x 1093 The Parkes Galactic All-Sky Survey, data courtesy
Naomi McClure-Griffiths/ GASS team (McClure-
Griffiths et al., 2009)

26 Gigabyte

Figure 7: Single frame rendering times for different cube rotation angles. The timing measurements were done for the HIPASS Southern Sky data cube on 3
workstations (one acting as a server) and 4 GPUs (2 P 4 G).

10

Figure 8: Minimum, average, and maximum rendering time for the HIPASS data cube using different hardware configurations. The horizontal line shows our target
of 5 fps for real-time interaction.

Figure 9: Minimum, average, and maximum rendering time for the HIPASS cube, GASS Cube, and Nbody cube using the 3P8G configuration.

11

Figure 10: Different GPU sub-frame rendering time for the HIPASS cube using the 2P2G configuration with early ray termination deactivated and orthographic
projection.

Figure 11: Different GPU sub-frame rendering time for the HIPASS cube using the 2P2G configuration with early ray termination enabled and perspective projection.

12

Figure 12: Single frame rendering times for different cube rotation angles with different output sizes (1024 × 1024 and 512 × 512 pixels). The timing measurement
was done for the HIPASS cube on 3 workstations (one acting as a server) and 4 GPUs (2 P 4 G).

Table 2: Details of the hardware configurations of the cluster (GPU+CPU) used
to evaluate performance. The letter ‘P’ is used as an abbreviation for the number
of processing workstation, and the letter ‘G’ is used as an abbreviation for the
number of GPUs. The configurations do not include the server.

Configuration Client(1) Client(2) Client(3) Server
1 P 4 G 4 1
2 P 4 G 2 2 1
3 P 5 G 2 2 1 1
3 P 6 G 2 2 2 1
3 P 7 G 2 2 3 1
3 P 8 G 2 2 4 1

CPUs and was able to render around 7 MVox/s. If we scale that
to current CPU clock speeds (e.g. Westmere 2.93GHz proces-
sor), dvr should be capable to render 120 MVox/s with 6 cores.
Consequently, using equation (7) of Beeson et al. (2003) and
by assuming perfect scalability, dvr needs approximetely 120
× 6-core Westmere processors in order to render the HIPASS
cube with 5 fps, while our framework can render that cube with
4 GPUs.

During our performance and timing tests, we were unable
to obtain a data file larger than the GASS data cube (26 GB).
Furthermore, access to a larger GPU cluster was not available.
Although we remain cautious about conclusions related to scal-
ability of our framework, we believe it should be able to han-
dle larger datasets, even of Terabyte order, if proper hardware
infrastructure is available. We base this conclusion on the fol-
lowing:

• the amount of data transfer between the rendering work-
station and the server is almost constant and depends on

the output resolution rather than the input data size;

• the usage of ray casting combined with the rendering rect-
angle optimization makes the problem size almost con-
stant for the rendering and the communication between the
nodes;

• the overlapping between the computation and communi-
cation minimizes the communication delay;

• the two stage frame composition minimizes the amount of
the processing required by the server and the amount of
data exchanged between the clients and the server; and

• the local and global composition processes are done on
GPU with a negligible cost compared to the rendering
time.

Moreover, the on-going increase in number of processing
cores and size of local memory of GPUs will help to decrease
the rendering time and minimize the number of GPUs needed
to render a certain data size. For example the next generation
of NVIDIA Tesla GPUs is expected to have double the current
number of processing elements and 1.5 times the current mem-
ory size.

4.2. Future Work

We expect the performance of our framework will be dramat-
ically enhanced by using the next NVIDIA GPU architecture,
code-named Fermi. Features like predicated instructions, larger
local memory, larger memory address space, greater DRAM
bandwidth, improved instruction scheduler, and higher FLOP/S

13

will provide our system with more powerful hardware infras-
tructure and remove some of the software bottlenecks. Also,
utilizing the direct integration between the Tesla cards and an
InfiniBand network infrastructure may decrease the communi-
cation overhead and provide improved scalability18.

To overcome the current GPU memory size limitation, we
believe that lossy compression of the cube portions stored in
the GPU local memory, using wavelet compression, will en-
able us to store and render larger cubes without affecting the
final render quality. There have been a few trials to visualize
datasets stored in the compressed wavelet format (Nguyen and
Saupe, 2001; Guthe et al., 2002), but to our knowledge none
of these algorithms have been ported to GPU yet. It is likely
that wavelet techniques can also be applied as a noise removal
tool to increase the output quality. The usage of wavelet com-
pression was demonstrated by Pence et al. (2009) with optical
data, however, some modifications are required to enable fast
decompression and retrieval of random data positions (Nguyen
and Saupe, 2001).

Quantitative data visualization support is still a missing in-
gredient from a complete visualization and analysis system for
astronomy, and may be the main factor limiting a wider adop-
tion of 3D visualization in astronomy. We aim to examine this
further in future work. A closely related issue is the use of
noise-suppression techniques, as faint signals may be hidden in
large-scale noise features. Designing one or more specialized
transfer functions can provide the user with better visualization
results. Most of the current well known transfer functions may
not provide the user with the best visualization output because
they were designed to serve other scientific domains. Transfer
functions capable of suppressing noise and emphasising impor-
tant data features will provide the users with better visualization
outcomes and enhance the usefulness of 3D visualization as a
data analysis and knowledge discovery tool.

5. Conclusion

Visualization is a valuable tool for knowledge discovery.
Along with providing insight and opportunities for analysis of
sources under investigation, global views of data are vital for
the detection of instrumentation errors, and the identification
of data artefacts and noise characteristics. New approaches
are needed to visualize the massive, Terabyte order, data cubes
that will be produced routinely by facilities such as ASKAP,
MeerKat, LOFAR and ultimately, the Square Kilometre Array.

In this work, we have introduced a framework to visualize
larger than memory multispectral 3D datasets. The framework
provides the user with a real-time interactive volume rendering
by combining between shared and distributed memory architec-
tures, employing a distributed GPU infrastructure, and using the
ray-casting volume rendering algorithm. We are trying to pro-
vide astronomers with a more affordable solution to deal with
the upcoming data avalanche, by offering GPUs as an alterna-
tive to the currently used distributed computing infrastructures.

18http://www.nvidia.com/object/ io 1258539409179.html

By reducing the number of machines required to handle such
datasets we not only reduce the overall hardware cost but also
we provide an easier to deploy, and hence manage, solution. A
remote viewer application is used to enable the user to control
and interact with the framework. System implementation was
done using QT, MPI, and CUDA within a C++ object oriented
framework.

Framework performance was evaluated using a cluster of
four workstations and nine GPUs. The performance evalua-
tion and timing tests were used to show the framework scala-
bility, how different framework processes contribute to the final
rendering time, and the effect of changing the cube orientation
and the output viewport size on the rendering time. Medium
size (12 GB) and relatively larger data cube (26 GB) were used
throughout the timing tests. The maximum total rendering time
for a 26 GB data cube with a 1024 × 1024 output viewport was
< 0.3 second, with frame rates of 5 fps achievable.

Based on the framework performance and timing analyses,
we believe it should be able to visualize larger datasets, even of
Terabyte order, if proper hardware infrastructure is available.
The usage of ray casting, the overlapping between communi-
cation and computation, and the two stage results compositing
minimize the parallelization overhead and the final frame ren-
dering time.

Acknowledgements

We thank Dr. Virginia Kilborn, Dr. Emma Ryan-Weber,
and Dr. Gregory Poole (Swinburne University of Technology),
Dr. Russell Jurek and Dr. Naomi McClure-Griffiths (ATNF -
CSIRO), and Dr. Tara Murphy (Sydney University) for provid-
ing sample data cubes, useful discussions, and suggestions.

References

Barnes, D. G., Staveley-Smith, L., de Blok, W. J. G., Oosterloo, T., Stewart,
I. M., Wright, A. E., Banks, G. D., Bhathal, R., Boyce, P. J., Calabretta,
M. R., Disney, M. J., Drinkwater, M. J., Ekers, R. D., Freeman, K. C.,
Gibson, B. K., Green, A. J., Haynes, R. F., te Lintel Hekkert, P., Henning,
P. A., Jerjen, H., Juraszek, S., Kesteven, M. J., Kilborn, V. A., Knezek,
P. M., Koribalski, B., Kraan-Korteweg, R. C., Malin, D. F., Marquarding,
M., Minchin, R. F., Mould, J. R., Price, R. M., Putman, M. E., Ryder, S. D.,
Sadler, E. M., Schröder, A., Stootman, F., Webster, R. L., Wilson, W. E., Ye,
T., 2001. The Hi Parkes All Sky Survey: southern observations, calibration
and robust imaging. mnras 322, 486–498.

Becciani, U., Costa, A., Antonuccio-Delogu, V., Caniglia, G., Comparato, M.,
Gheller, C., Jin, Z., Krokos, M., Massimino, P., 2010. VisIVO–Integrated
Tools and Services for Large-Scale Astrophysical Visualization. PASP 122,
119–130.

Beeson, B., Barnes, D., Bourke, P., 2003. A distributed-data implementation of
the perspective shear-warp volume rendering algorithm for visualisation of
large astronomical cubes. PASA 20, 300–313.

Beeson, B., Lancaster, M., Barnes, D., Bourke, P., Rixon, G., 2004. Visualizing
astronomy data using VRML. In: Proceedings of SPIE. Vol. 5493. pp. 242–
253.

Brugel, E., 1993. Visualization techniques to aid in the analysis of multi-
spectral astrophysical datasets. Tech. rep., University of Colorado, Depart-
ment of Computer Science, Boulder.

Domik, G., Mickus-Miceli, K., 1992. Software Design and Development In
a Scientific Environment: Lessons Learned During the Development of
STAR, an Astrophysical Analysis and Visualization Package. In: Astronom-
ical Data Analysis Software and Systems I. Vol. 25. p. 95.

14

Drebin, R., Carpenter, L., Hanrahan, P., 1988. Volume rendering. ACM Sig-
graph Computer Graphics 22 (4), 74.

Fluke, C., English, J., Barnes, D., 2010. Visualization-Directed Interactive
Model-Fitting to Spectral Data Cubes. Arxiv preprint arXiv:1001.2043.

Goel, V., Mukherjee, A., 1996. An optimal parallel algorithm for volume ray
casting. The Visual Computer 12 (1), 26–39.

Gooch, R., 1995. Astronomers and their shady algorithms. In: IEEE Confer-
ence on Visualization, 1995. Visualization’95. Proceedings. pp. 374–377.

Graham, R., 1972. An efficient algorith for determining the convex hull of a
finite planar set. Information Processing Letters 1 (4), 132–133.

Guthe, S., Wand, M., Gonser, J., Strasser, W., 2002. Interactive rendering of
large volume data sets. IEEE Visualization, 2002. VIS 2002, 53–60.

Hamada, T., Narumi, T., Yokota, R., Yasuoka, K., Nitadori, K., Taiji, M., 2009.
42 tflops hierarchical n-body simulations on gpus with applications in both
astrophysics and turbulence. In: SC ’09: Proceedings of the Conference
on High Performance Computing Networking, Storage and Analysis. ACM,
New York, NY, USA, pp. 1–12.

Jin, Z., Krokos, M., Rivi, M., Gheller, C., Dolag, K., Reinecke, M., april 2010.
High-performance astrophysical visualization using Splotch. ArXiv e-prints.

Kaehler, R., Wise, J., Abel, T., Hege, H., 2006. GPU-assisted raycasting
for cosmological adaptive mesh refinement simulations. In: Eurograph-
ics/IEEE VGTC Workshop on Volume Graphics (Boston, Massachusetts,
USA, 2006), Eurographics Association. Citeseer, pp. 103–110.

Lacroute, P., Levoy, M., 1994. Fast volume rendering using a shear-warp fac-
torization of the viewing transformation. In: Proceedings of the 21st annual
conference on Computer graphics and interactive techniques. ACM, p. 458.

Levoy, M., 1990. Efficient ray tracing of volume data. ACM Transactions on
Graphics (TOG) 9 (3), 261.

Li, H., Fu, C., Hanson, A., 2008. Visualizing Multiwavelength Astrophysical
Data. IEEE Transactions on Visualization and Computer Graphics 14 (6),
1555–1562.

Lombeyda, S., Moll, L., Shand, M., Breen, D., Heirich, A., 2001. Scalable
interactive volume rendering using off-the-shelf components. In: PVG ’01:
Proceedings of the IEEE 2001 symposium on parallel and large-data visual-
ization and graphics. IEEE Press, Piscataway, NJ, USA, pp. 115–121.

Magnor, M., Hildebrand, K., Lintu, A., Hanson, A., 2005. Reflection nebula
visualization. IEEE Visualization, 2005. VIS 05, 255–262.

Maximo, A., Ribeiro, S., Bentes, C., Oliveira, A., Farias, R., 2008. Mem-
ory efficient gpu-based ray casting for unstructured volume rendering. In:
IEEE/EG Int. Symp. Volume and Point-Based Graph. pp. 55–62.

McClure-Griffiths, N. M., Pisano, D. J., Calabretta, M. R., Ford, H. A., Lock-
man, F. J., Staveley-Smith, L., Kalberla, P. M. W., Bailin, J., Dedes, L.,
Janowiecki, S., Gibson, B. K., Murphy, T., Nakanishi, H., Newton-McGee,
K., Apr. 2009. Gass: The Parkes Galactic All-Sky Survey. I. Survey De-
scription, Goals, and Initial Data Release. ApJS 181, 398–412.

Nadeau, D., Genetti, J., Napear, S., Pailthorpe, B., Emmart, C., Wesselak, E.,
Davidson, D., 2001. Visualizing stars and emission nebulae. In: Computer
Graphics Forum. Vol. 20. pp. 27–33.

Nguyen, K., Saupe, D., 2001. Rapid high quality compression of volume data
for visualization. In: Computer Graphics Forum. Vol. 20. pp. 49–57.

Norris, R., 1994. The Challenge of Astronomical Visualisation. In: Astronom-
ical Data Analysis Software and Systems III. Vol. 61. p. 51.

Oosterloo, T., 1995. Visualisation of Radio Data. In: Astronomical socity of
Australia Proceedings. Vol. 12. p. 215.

Oosterloo, T., 1996. Adaptive filtering and masking of HI data cubes. VA 40 (4),
571–577.

Pence, W., Seaman, R., White, R., 2009. Lossless astronomical image com-
pression and the effects of noise. PASP 121, 000–000.

Sabella, P., 1988. A rendering algorithm for visualizing 3D scalar fields. In:
Proceedings of the 15th annual conference on Computer graphics and inter-
active techniques. ACM, p. 58.

Samet, H., 1995. Spatial data structures. Modern Database Systems: The Object
Model, Interoperability and Beyond, 361–385.

Scharsach, H., 2005. Advanced GPU raycasting. Proceedings of CESCG 5, 67–
76.

Schive, H., Tsai, Y., Chiueh, T., 2010. GAMER: A Graphic Processing Unit
Accelerated Adaptive-Mesh-Refinement Code for Astrophysics. ApJS 186,
457–484.

Schwarz, N., 2007. Distributed Volume Rendering of Very Large Data on
High-Resolution Scalable Displays. Master’s thesis, University of Illinois,
Chicago.

Szalay, T., Springel, V., Lemson, G., Nov. 2008. GPU-Based Interactive Visu-
alization of Billion Point Cosmological Simulations. ArXiv e-prints.

Thibault, W., Naylor, B., 1987. Set operations on polyhedra using binary space
partitioning trees. ACM SIGGRAPH Computer Graphics 21 (4), 162.

Wayth, R. B., Greenhill, L. J., Briggs, F. H., 2009. A gpu-based real-time soft-
ware correlation system for the murchison widefield array prototype. PASP
121 (882), 857–865.

15

	Cover sheet

	Accepted manuscript

	1 Introduction
	1.1 Volume rendering
	1.2 The larger-than-memory problem
	1.3 This work

	2 Ray casting
	2.1 Hardware and software architecture
	2.2 Rendering overview
	2.3 Data Partitioning
	2.4 Ray-Casting Process
	2.5 Image Composition

	3 Results
	4 Discussion
	4.1 Framework performance and scalability
	4.2 Future Work

	5 Conclusion

